Exam I: MTH 111, Spring 2016

Ayman Badawi

QUESTION 1. (i) Consider the parabola $y=-2 x^{2}+8 x-14$. The vertex is
a. $(2,-3)$
b. $(2,-6)$
c. $(-2,6)$
d. $(-2,3)$
(ii) Consider the parabola $y=-2 x^{2}+8 x-14$. The directrix is
a. $y=-\frac{1}{8}$
b. $x=-\frac{1}{8}$
c. $y=-\frac{49}{8}$
d. $y=-\frac{47}{8}$.
(iii) Consider the parabola $8(y+7)=(x-6)^{2}$. Then the focus is
a. $(6,-5)$
b. $(6,-9)$
c. $(8,-7)$
d. $(8,-7)$
e. $(4,-7)$,
(iv) Let F be the focus of a parabola $y=-a x^{2}+b x+c$, where $a>0$ (open downward). Assume that $Q=(2,3)$ is a point on the curve of the parabola such that $|Q F|=8$. Then the directrix of the parabola is
a. $\quad y=7$
b. $y=11$
c. $y=10$
d. $y=-5$
e. neither (a) nor (b) nor (c) and I recommend this answer:
(v) One of the foci of $\frac{(x-3)^{2}}{21}-\frac{y^{2}}{4}=1$ is
a. $(3,5)$
b. $(0,-5)$
c. $(-2,0)$
d. $(-8,0)$
(vi) The constant K of $\frac{(y+3)^{2}}{100}-\frac{x^{2}}{16}=1$ is
a. 20
b. 8
c. 13
d. 10
e. 4
(vii) One of the foci of $x^{2}+\frac{(y-2)^{2}}{10}=1$ is
a. $(3,2)$
b. $(0,3)$
c. $(0,2+\sqrt{10})$
d. $(0,5)$
(viii) Given $Q=(1,1,1)$ is not on the plane $P: 2 x+2 y+z-23=0$. Then $|Q P|=($ distance between Q and P$)$
a. 23
b. 3
c. $\frac{23}{\sqrt{3}}$
d. 6
(ix) The equation of the plane that contains the points $(1,-2,0),(3,1,4)$, and $(0,-1,2)$ is
a. $2(x-1)+(y+2)+5 z=0$
b. $2(x-1)-(y+2)+5 z=0$
d. $(x-1)+(y+2)+5 z=0$
e. $2(x-1)-8(y+2)+5 z=0$
(x) One of the following vectors can be drawn inside the plane $P: x-y+2 z=12$
a. $\langle 1,3,1\rangle$
b. $\langle 1,-1,2\rangle$ c. $\langle 4,2,6\rangle$
d. $\langle 2,6,0\rangle$
(xi) Given that the planes $2 x+y+z=0$ and $x+2 y-z=10$ intersect in a line L. Then a directing vector for L is
a. $3 \mathrm{i}+3 \mathrm{j}-2 \mathrm{k}$
b. $-3 i+3 j+2 k$
d. $-3 \mathrm{i}-3 \mathrm{j}+3 \mathrm{k}$
e. $-3 i+3 j+3 k$
(xii) Let $v=i+2 j+2 k$ and $u=<0,0,9>$. Then $\left|\operatorname{Proj}_{v}^{u}\right|=$
a. 1
b. 2
d. $\frac{1}{3}$
e. 6
(xiii) The point $Q=(2,2,1)$ does not lie on the line $L: x=2 t, y=t, z=2 t$, where $t \in R$. Then $|Q L|=$
a. $\sqrt{7}$
b. 3
c. 2
d. $\sqrt{5}$
(e) $\frac{\sqrt{17}}{3}$
(xiv) Given $(1,-1,2)$ and $(2,-3,8)$ are two points on a line L. The parametric equations of L are :
a. . $\quad x=1+t, y=-1-2 t, z=2+6 t$, where $t \in R$.
b. $x=1+3 t, y=-1-4 t, z=2+10 t$, where $t \in R \quad$ c. Neither (a) nor (b) and I recommend this answer:
(xv) One of the following points lie on the line $x=1+3 t, y=-1-4 t, z=2-10 t$, where $t \in R$
a. $(7,-9,22)$
b. $(10,13,-28)$
e. $(-2,3,12)$.
(xvi) Let θ be the angle between $v=<-1,2,2>$ and $u=<1,2,2>$. Then $\cos (\theta)$ is
a. $\frac{7}{81}$
b. $\frac{7}{9}$
c. $\frac{1}{9}$
d. 1
(xvii) Given $f_{1}=(2,-6), f_{2}=(2,2)$ are the foci of an ellipse and $k=14$ is the ellipse constant. The equation of the ellipse is :
a. $\quad \frac{(x-2)^{2}}{14}+\frac{(y+2)^{2}}{23}=1$
b. $\quad \frac{(x-2)^{2}}{49}+\frac{(y+2)^{2}}{33}=1$
e. $\frac{(x-2)^{2}}{33}+\frac{(y+2)^{2}}{49}=1$
d. neither (a) nor (b) nor (c) and I recommend this answer:
xviii) Consider the parabola $10(y+3)=(x-7)^{2}$ with focus F and vertex V. Then $|F V|=$
a. 10
b. 5
e. 2.5
neither (a) nor (b) nor (c) and I recommend this answer:

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

